Publicité
09-01-2020

Pour expliquer les plus grands mystères du cosmos, des chercheurs suggèrent l’existence d’un monde miroir, logé au sein de notre univers. Prêts pour une crampe au cerveau?

Est-il vraiment possible qu’un monde nous échappe entièrement, lui aussi issu du big bang, mais où il ferait beaucoup plus froid ? Il serait potentiellement cinq fois plus massif que notre univers et posséderait peut-être étoiles, trous noirs et galaxies. Certains évoquent même la possibilité qu’on y trouve de la vie, réfléchissant elle aussi, de son côté, à l’existence d’un monde parallèle! Ce monde serait invisible à nos yeux, qui ne voient que la matière «ordinaire». Mais il interagirait avec le nôtre à travers la gravité ; représentez-vous une planète qui semble orbiter autour d’absolument rien, mais qui, en réalité, se pavane autour d’une étoile miroir!

Le physicien Zurab Berezhiani m’entraîne dans ce secteur miroir au fil de notre entrevue et je m’y perds parfois. «Pourquoi les choses devraient-elles être simples ? questionne le professeur de l’Université de L’Aquila, en Italie. L’Univers est incroyablement complexe. Je n’aime pas les théories “vanille”, trop faciles.» On est plutôt dans la saveur «chocolat noir intense», quant à moi!

La matière miroir porte incroyablement bien son nom. Imaginez-la simplement comme une copie du modèle standard de la physique des particules, une théorie élaborée dans les années 1960 selon laquelle la matière est constituée de particules élémentaires qui interagissent entre elles par le biais de forces. Les particules miroirs seraient en tout point identiques aux «nôtres», mais n’interagiraient principalement qu’entre elles (sauf pour ce qui est de la gravité).

La locution particules miroirs est apparue dans la littérature scientifique en 1966. Dans un article publié dans le Soviet Journal of Nuclear Physics, les physiciens russes Igor Kobzarev, Lev Okun et Isaak Pomeranchuk indiquent que «l’introduction de ces particules rétablit l’équivalence gauche-droite» dans l’Univers. Autrement dit, elles restaurent la symétrie, qui est l’un des fondements majeurs de la physique théorique.

LISEZ LA SUITE DE CE REPORTAGE DANS LE NUMÉRO DE JANVIER-FÉVRIER 2020

Pour accéder à l’article complet, consultez notre numéro de janvier-février 2020. Achetez-le dès maintenant.

Un fondement mis à mal dans les années 1950 par les chercheurs Tsung Dao Lee et Chen Ning Yang, qui avaient formulé une théorie gênante : selon eux, la désintégration de certaines particules ne respecterait pas la symétrie gauche-droite. En gros, cette «symétrie de parité» veut qu’un processus physique et sa «version miroir» (quand les coordonnées et l’orientation dans l’espace sont inversées) soient tous deux possibles et équivalents. Les deux théoriciens avançaient pourtant que ce n’était pas toujours le cas, ce qui a été confirmé par la physicienne Chien-Shiung Wu en 1957, après qu’elle eut observé de près la désintégration bêta d’atomes de cobalt. Les électrons résultant de cette désintégration étaient majoritairement émis dans un sens particulier et la version miroir de cette désintégration n’était pas équivalente au processus d’origine.

Bref, on découvrait alors que l’Univers a une tendance « gauchère » dans les inter­actions faibles, une force fondamentale responsable de la désintégration des particules. L’adjectif ne renvoie évidemment pas à la main avec laquelle l’Univers prend des notes, mais bien à la relation entre la rotation et la trajectoire des particules.

Pour trouver une explication à cette asymétrie suspecte, les Russes ont proposé le concept de matière miroir invisible. Cet article a donné naissance à différents modèles au cours des décennies suivantes, qui n’ont toutefois jamais atteint le courant dominant en physique, mais qui continuent de passionner des théoriciens. La symétrie de parité est moins au cœur de ces modèles, mais il n’est pas exclu que la force faible puisse y être droitière. Pour en avoir le cœur net, il faudrait voir les atomes de cobalt miroirs…

Traverser le mur

Des chercheurs planchent justement sur des expériences concrètes permettant de tester cette idée de matière miroir. L’étrange défi n’effraie aucunement Leah Broussard, qui a déjà mené des expériences sur le « renversement du temps ». « Ç’a l’air pas mal plus “ science-fiction ” que ce l’était réellement », assure cette physicienne du Laboratoire national d’Oak Ridge, dans le Tennessee.

Son travail actuel se base sur l’idée que les particules neutres (sans charge électrique, comme les photons, les neutrinos et les neutrons) pourraient osciller entre un état miroir et un état ordinaire, autrement dit entre un monde et l’autre.

Zurab Berezhiani a beaucoup travaillé sur cette hypothèse et sur la possibilité de la mettre à l’épreuve. Car des expériences dans le passé ont montré que les neutrons libres (donc pas « enfermés » dans un noyau atomique) ont une durée de vie différente selon la méthode utilisée pour la mesurer. Sans entrer dans les détails, cette infime différence pourrait signifier que certains neutrons sont passés dans le secteur miroir avant de se désintégrer.

À la fin de l’été 2019, Leah Broussard et ses collègues ont fait une expérience à l’aide d’un instrument qui produit des neutrons et dont on se sert habituellement pour tester des matériaux. « L’idée est que, si l’on dirige un faisceau de neutrons sur un mur, on s’attend à ne rien détecter de l’autre côté du mur. C’est comme si l’on y orientait le faisceau d’une lampe de poche : on ne s’attend pas à voir la lumière de l’autre côté. Mais si un neutron “choisit” de devenir miroir quand il approche du mur, il n’interagira pas avec la matière et pourra traverser le mur. »

Pour le détecter de l’autre côté, il faut toutefois que le neutron miroir fasse le processus inverse et redevienne un neutron classique. « On cherche à ce qu’un phénomène rare se produise deux fois. On a donc besoin de beaucoup, beaucoup de neutrons pour peut-être en déceler quelques-uns qui auront oscillé entre un état et un autre. » Les données sont présentement analysées et l’expérience sera répétée avec un réacteur plus puissant dès que possible.

Ces recherches sont assez simples à réaliser et ne coûtent pas cher : même si le concept ne fait pas l’unanimité, il vaut la peine d’être testé, estime Leah Broussard. En entrevue, elle pèse d’ailleurs ses mots pour éviter que son enthousiasme soit associé à une trop grande confiance quant à l’existence de la matière miroir.

Pour certains, la matière miroir est surtout une excellente candidate pour incarner la matière noire, ou du moins une partie. Vous savez, ces 85 % de la matière du cosmos dont on ne connaît rien, à part leur effet gravitationnel ? Le modèle standard de la physique des particules ne dit rien à son sujet, ce qui pose tout un problème, sorte d’énorme pièce manquante dans le puzzle de l’Univers.

Elizabeth Leason, étudiante au doctorat à l’Université d’Édimbourg, pense qu’il faut examiner toutes les pistes. « Après des décennies de recherches expérimentales faisant appel à différentes techniques − indirecte, directe et grâce à des collisionneurs −, on n’a toujours pas trouvé de matière noire. Cela signifie que des modèles traditionnels qui ont fait l’objet de tests rigoureux, comme les WIMP, deviennent moins populaires et qu’il y a un intérêt croissant pour d’autres modèles. L’un d’eux est l’idée d’un secteur caché. »

Qu’est-ce qu’un WIMP ?

C’est l’acronyme anglais de weakly interacting massive particule ou « particules massives inter­agissant faiblement », le concept le plus en vogue pour expliquer la matière noire.

Ces dernières années, la jeune scientifique a fait partie d’un groupe qui cherchait des signaux alternatifs dans les données de l’expérience Large Underground Xenon (LUX) du Sanford Underground Research Facility, qui s’est déroulée entre 2013 et 2016. Il s’agit d’un dispositif logé au fond d’une mine du Dakota du Sud qui tentait de détecter des interactions entre des atomes de xénon et des particules de matière noire. Il n’a rien décelé ni du côté des WIMP ni de celui de la matière miroir, excluant donc certaines hypothèses. Une version plus sensible du détecteur, le LUX-ZEPLIN, continuera bientôt le travail, et Elizabeth Leason a bien hâte à sa mise en marche. Car l’idée d’un secteur inexploré « qui pourrait contenir des particules miroirs, des atomes, des étoiles et des planètes frappe l’imagination, et c’est excitant de pouvoir tester cette théorie », dit-elle.

Vers le cosmos

Les expériences décrites jusqu’à présent concernent l’infiniment petit. Mais la matière miroir pourrait aussi avoir des répercussions à l’échelle du cosmos. Comme on présume qu’elle interagit essentiellement par l’entremise de la gravité, les détecteurs d’ondes gravitationnelles pourraient-ils nous en dire plus ? Ces derniers mesurent le passage de vagues dans l’espace-temps causées par des évènements forts en énergie.

Un article paru en mai 2019 dans The Monthly Notices of the Royal Astronomical Society avance l’hypothèse que certaines collisions de trous noirs repérées par le LIGO (Laser Interferometer
Gravitational-Wave Observatory), aux États-Unis, seraient survenues dans le secteur miroir. Avant que le LIGO ne décèle de telles collisions, « on estimait qu’il y en avait de 5 à 10 par année, raconte Merab Gogberashvili, coauteur de l’article et professeur à l’Université d’État de Tbilissi Ivane Javakhishvili, en Géorgie. Mais lors de la première campagne d’observation du LIGO, on en a trouvé 10 fois plus ! C’était une surprise ».

Une idée plus populaire : la supersymétrie

Même si l’existence de la matière miroir permettait de rétablir la symétrie de parité, la supersymétrie (ou SuSy pour les intimes) va plus loin. Cette théorie a émergé dans les années 1970 et regroupe divers modèles. Elle crée de nouveaux partenaires pour chaque particule élémentaire du modèle standard de la physique des particules. Ainsi, le quark top a un nouvel ami : le stop. « Le stop pourrait avoir une masse et des caractéristiques différentes, mais il aura toujours la même charge et la même parité [que le top] », indique Alan Robinson, chercheur à l’Université de Montréal. Le grand collisionneur de hadrons, en Europe, a échoué à prouver cette idée jusqu’à présent.

Il évalue que les collisions de trous noirs seraient donc 10 fois plus fréquentes dans le secteur miroir. Pourquoi ? Puisque, selon les théoriciens, le secteur miroir est plus froid, cela laisse croire que les étoiles s’y sont formées il y a plus longtemps et que les trous noirs ont eu plus de temps pour acquérir de la masse et former des duos.

Le chercheur est allé plus loin dans une prépublication sur arXiv l’automne dernier, à propos cette fois des collisions d’étoiles à neutrons. Un tel phénomène a été rapporté en 2017 à la fois par les détecteurs d’ondes gravitationnelles et par des télescopes scrutant les ondes électromagnétiques : un sursaut de rayons gamma a notamment été enregistré. Pour les collisions d’étoiles à neutrons − et d’une étoile à neutrons avec un trou noir −, « on s’attend à ce que 1 détection sur 10 soit accompagnée de rayons gamma, tandis que les 9 autres auront eu lieu dans le monde miroir » et n’émettront rien de visible, explique le physicien.

Tout cela donne le vertige. Mais il y a plus ! En entrevue, Zurab Berezhiani évoque le roman de science-fiction Les dieux eux-mêmes, d’Isaac Asimov, dans lequel une fuite de matière du secteur parallèle vers le nôtre devient une source d’énergie. Une variation sur ce concept est d’ailleurs au cœur d’un article que le chercheur a publié en 2018 et qui avance que la matière pourrait non seulement osciller entre un état miroir et un état ordinaire, mais aussi passer à l’état d’antimatière (donc de charge électrique opposée). C’est que la rencontre de la matière et de l’antimatière provoque leur annihilation et libère de l’énergie. On peut alors imaginer des centrales énergétiques partagées entre les sociétés ordinaire et miroir ! « Mais on ne pourrait pas communiquer par Skype avec ces individus [du secteur miroir], puisque nos mondes n’interagissent pas entre eux à travers la force électromagnétique », s’amuse le professeur, avec qui nous échangeons justement sur Skype.

Alan Robinson, professeur au Département de physique de l’Université de Montréal, suit l’évolution de la recherche sur la matière miroir sans fonder beaucoup d’espoir à son sujet. « Il n’y a pas beaucoup de gens qui la cherchent, car il y a très peu d’indices de son existence, observe celui qui travaille à la calibration d’instruments de deux expériences qui visent à détecter certains types de WIMP. En fait, il y a un grand indice théorique, mais pas d’indice expérimental. Mais oui, c’est utile de continuer à la chercher, et j’encourage ces chercheurs. »

M. Robinson accorde du crédit à toutes les idées, même les plus extravagantes, dans la mesure où les physiciens ne prétendent pas avoir résolu tous les mystères de leur discipline. Il leur faut rester humbles devant l’Univers.

Photo en ouverture: Donald Robitaille / OSA

Miroir et multivers, quelle différence ?

Comme pour le secteur miroir, le concept de « multivers » implique que des parties du cosmos nous échappent. Le premier à évoquer l’idée de mondes multiples a été le physicien américain Hugh Everett dans les années 1950. Selon certains théoriciens, notre univers serait ainsi une petite partie d’une structure bien plus large, formée d’autres univers où les particules élémentaires pourraient même être distinctes de ce que nous connaissons. On parle de ces univers comme de bulles dont la quantité pourrait être infinie. Quant au big bang, il n’aurait peut-être donné naissance qu’à « notre » monde.

Publicité

À lire aussi

Espace

De l’eau liquide découverte sur Mars

Cette fois, c’est assez clair: il y a bel et bien de l’eau liquide sur Mars, cachée sous la calotte glaciaire du pôle sud.
Marine Corniou 25-07-2018
Espace

ALMA, les nouvelles oreilles de la terre

Au nord du Chili, à 5 000 m d’altitude, un gigantesque ensemble d’antennes capte des ondes qu’aucun instrument n’avait encore pu déceler.
Espace

Du pain frais dans l’espace

Dès le mois d’avril prochain, les astronautes pourront déguster du pain fraîchement sorti du four dans la Station spatiale internationale.
Annie Labrecque 25-09-2017